
CS60092: Information Retrieval

Index Construction Algorithms, 
Dynamic Indexes

Prof. Sourangshu Bhattacharya

CSE, IIT Kharagpur



Index construction

How do we construct an index?
What strategies can we use with limited main 
memory?

Ch. 4



Documents are parsed to extract words and these are 
saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall index construction

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2



Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

After all documents have been 
parsed, the inverted file is sorted by 
terms. 

We focus on this sort step.

Sec. 4.2



RCV1: Our collection for this lecture

As an example for applying scalable index construction 
algorithms, we will use the Reuters RCV1 collection.

This is one year of Reuters newswire (part of 1995 and 1996)

The collection isn’t really large enough, but it’s publicly 
available and is a plausible example.



A Reuters RCV1 document
Sec. 4.2



Reuters RCV1 statistics

symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2



Sort-based index 
construction

As we build the index, we parse docs one at a time.
The final postings for any term are incomplete until the end.

At 8 bytes per (termID, docID), demands a lot of space for large 
collections.
T = 100,000,000 in the case of RCV1

So … we can do this in memory today, but typical collections are much larger.  E.g., 
the New York Times provides an index of >150 years of newswire

Thus: We need to store intermediate results on disk.

Sec. 4.2



Scaling index construction

In-memory index construction does not scale
Can’t stuff entire collection into memory, sort, then write back

How can we construct an index for very large collections?

Taking into account hardware constraints. . .
Memory, disk, speed, etc.

Let’s review some hardware basics

Sec. 4.2



Hardware basics

Servers used in IR systems now typically have several GB of main 
memory, sometimes tens of GB. 

Available disk space is several (2–3) orders of magnitude larger.

Fault tolerance is very expensive: It’s much cheaper to use many 
regular machines rather than one fault tolerant machine.

Sec. 4.1



Hardware basics

Access to data in memory is much faster than access to data on 
disk.
Disk seeks: No data is transferred from disk while the disk head is 
being positioned.

Therefore: Transferring one large chunk of data from disk to 
memory is faster than transferring many small chunks.

Disk I/O is block-based: Reading and writing of entire blocks (as 
opposed to smaller chunks).
Block sizes: 8KB to 256 KB.

Sec. 4.1



Hardware assumptions (circa 2007)

symbol statistic value
s average seek time 5 ms = 5 x 10−3 s
b transfer time per byte 0.02 μs = 2 x 10−8 s

processor’s clock rate 109 s−1

p low-level operation 0.01 μs = 10−8 s
(e.g., compare & swap a word)
size of main memory several GB
size of disk space 1 TB or more

Sec. 4.1



Sort using disk as “memory”?

Can we use the same index construction algorithm for larger 
collections, but by using disk instead of memory?

No: Sorting T = 100,000,000 records on disk is too slow – too 
many disk seeks.

We need an external sorting algorithm.

Sec. 4.2



Introduction to

Information Retrieval

CS276: Information Retrieval and Web Search

External memory indexing



BSBI: Blocked sort-based Indexing (Sorting with 
fewer disk seeks)
8-byte records (termID, docID)

These are generated as we parse docs

Must now sort 100M such 8-byte records by termID

Define a Block ~ 10M such records
Can easily fit a couple into memory
Will have 10 such blocks to start with

Basic idea of algorithm:
1. Accumulate postings for each block, sort, write to disk
2. Then merge the blocks into one long sorted order

Sec. 4.2



Sec. 4.2

BSBI: Blocked sort-based Indexing (Sorting with 
fewer disk seeks)



Sorting 10 blocks of 10M records

First, read each block and sort within: 
Quicksort takes O(N ln N) expected steps
In our case N=10M

10 times this estimate – gives us 10 sorted runs of 10M records 
each.

Done straightforwardly, need 2 copies of data on disk
But can optimize this

Sec. 4.2



How to merge the sorted runs?

Can do binary merges, with a merge tree of log210 = 4 layers.
During each layer, read into memory runs in blocks of 10M, merge, write back.

Sec. 4.2

Disk

d1,d3

d1,d2,d4

d5

d1,d2,d3,d5

brutus

caesar

noble

with

d6,d7

d8,d9

d10

d8

brutus

caesar

julius

killed

d1,d3,d6,d7

d1,d2,d4,d8,d9

d10

d8

d5

d1,d2,d3,d5

brutus

caesar

julius

killed

noble

with
Postings lists
to be merged Merged

postings list



How to merge the sorted runs?

But it is more efficient to do a multi-way merge, where you are reading from all 
blocks simultaneously

1. Open all block files simultaneously and maintain a read buffer for each one and 
a write buffer for the output file

2. In each iteration, pick the lowest termID that hasn’t been processed using a 
priority queue

3. Merge all postings lists for that termID and write it out

Providing you read decent-sized chunks of each block into memory and then 
write out a decent-sized output chunk, then you’re not killed by disk seeks

Sec. 4.2



Remaining problem with sort-based algorithm

Our assumption was: we can keep the dictionary in memory.

We need the dictionary (which grows dynamically) in order to 
implement a term to termID mapping.

Sec. 4.3



SPIMI: 
Single-pass in-memory indexing

Key idea 1: Generate separate dictionaries for each block – no need to maintain 
term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists as they occur.

With these two ideas we can generate a complete inverted index for each block.
These separate indexes can then be merged into one big index.

Sec. 4.3



SPIMI-Invert

Merging of blocks is analogous to BSBI.

Sec. 4.3



SPIMI in action

23

Input token Dictionary

Caesar d1

caesar d1

with d1
with d1Brutus d1

brutus d1

Caesar d2

d2
with d2

d2

Brutus d3

d3

with d3

d3

Caesar d4

d4

noble d5

noble d5

with d5

d5

Sorted 
dictionary
brutus d1 d3

caesar d1d2 d4

noble d5

with d1 d2 d3 d5



SPIMI: Compression

Compression makes SPIMI even more efficient.
Compression of terms
Compression of postings

More on this later …

Sec. 4.3

Original publication on SPIMI: Heinz and Zobel (2003)



Introduction to

Information Retrieval

CS276: Information Retrieval and Web Search

Distributed indexing



Distributed indexing

For web-scale indexing (don’t try this at home!):
must use a distributed computing cluster

Individual machines are fault-prone
Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Sec. 4.4



Web search engine data centers

Web search data centers (Google, Bing, Baidu) mainly contain 
commodity machines.

Data centers are distributed around the world.

Estimate: Google ~1 million servers, 3 million processors/cores 
(Gartner 2007)

Sec. 4.4



Massive data centers

If in a non-fault-tolerant system with 1000 nodes, each node has 
99.9% uptime, what is the uptime of the entire system?

Answer: 37% - meaning, 63% of the time one or more servers is 
down.

Exercise: Calculate the number of servers failing per minute for 
an installation of 1 million servers.

Sec. 4.4



Distributed indexing

Maintain a master machine directing the indexing job –
considered “safe”.

Break up indexing into sets of (parallel) tasks.

Master machine assigns each task to an idle machine from a pool.

Sec. 4.4



Parallel tasks

We will use two sets of parallel tasks
Parsers
Inverters

Break the input document collection into splits

Each split is a subset of documents (corresponding to blocks in 
BSBI/SPIMI)

Sec. 4.4



Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4



Parsers

Master assigns a split to an idle parser machine
Parser reads a document at a time and emits 
(term, doc) pairs
Parser writes pairs into j partitions
Example: Each partition is for a range of terms’ first letters

(e.g., a-f, g-p, q-z) – here j = 3.
Now to complete the index inversion

Sec. 4.4



Inverters

An inverter collects all (term,doc) pairs (= postings) for one term-
partition.
Sorts and writes to postings lists

Sec. 4.4



Example for index 
construction

Map:
d1 : C came, C c’ed. 
d2 : C died. 
→
<C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>, <died,d2>

Reduce:
(<C,(d1,d1,d2)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>)  
→  
(<C,(d1:2,d2:1)><died,(d2:1)>, <came,(d1:1)>,<c’ed,(d1:1)>)

34

Caesar conquered



Index construction

Index construction was just one phase.
Another phase: transforming a term-partitioned index into a 
document-partitioned index.

Term-partitioned: one machine handles a subrange of terms
Document-partitioned: one machine handles a subrange of documents

As we’ll discuss in the web part of the course, most search 
engines use a document-partitioned index … better load 
balancing, etc.

Sec. 4.4



MapReduce

The index construction algorithm we just described is an instance 
of MapReduce.
MapReduce (Dean and Ghemawat 2004) is a robust and 
conceptually simple framework for distributed computing …
… without having to write code for the distribution part.
They describe the Google indexing system (ca. 2002) as consisting 
of a number of phases, each implemented in MapReduce.

Sec. 4.4



Schema for index construction in MapReduce

Schema of map and reduce functions
map: input → list(k, v)     
reduce: (k,list(v)) → output

Instantiation of the schema for index construction
map: collection → list(termID, docID)
reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) → 
(postings list1, postings list2, …)

Sec. 4.4



Introduction to

Information Retrieval

CS276: Information Retrieval and Web Search
Dynamic indexing



Dynamic indexing

Up to now, we have assumed that collections are static.

They rarely are: 
Documents come in over time and need to be inserted.
Documents are deleted and modified.

This means that the dictionary and postings lists have to be 
modified:

Postings updates for terms already in dictionary
New terms added to dictionary

Sec. 4.5



Simplest approach

Maintain “big”main index

New docs go into “small” auxiliary index

Search across both, merge results

Deletions
Invalidation bit-vector for deleted docs
Filter docs output on a search result by this invalidation bit-vector

Periodically, re-index into one main index

Sec. 4.5



Issues with main and auxiliary indexes

Problem of frequent merges – you touch stuff a lot
Poor performance during merge

Actually:
Merging of the auxiliary index into the main index is efficient if we keep a 
separate file for each postings list.
Merge is the same as a simple append.
But then we would need a lot of files – inefficient for OS.

Assumption for the rest of the lecture: The index is one big file.

In reality: Use a scheme somewhere in between (e.g., split very 
large postings lists, collect postings lists of length 1 in one file etc.)

Sec. 4.5



Logarithmic merge

Maintain a series of indexes, each twice as large as the previous one
At any time, some of these powers of 2 are instantiated

Keep smallest (Z0) in memory, Larger ones (I0, I1, …) on disk

If Z0 gets too big (> n), write to disk as I0 or merge with I0 (if I0 already exists) as 
Z1

Either write merge Z1 to disk as I1 (if no I1) or merge with I1 to form Z2

…

Sec. 4.5



Logarithmic merge in 
action

43

I1

Z0

I1

I0
I1

Z0

I0
I1

Z0

I0I0
Z0

I2

≤n
n
2n
4n
8n
16n



Sec. 4.5



Logarithmic merge

Auxiliary and main index: 
T/n merges where T is # of postings and n is size of auxiliary
Index construction time is O(T2/n) as in the worst case a posting is touched T/n times

Logarithmic merge: Each posting is merged at most O(log (T/n)) times, so 
complexity is O(T log (T/n))
So logarithmic merge is much more efficient for index construction

But query processing now requires the merging of O(log (T/n)) indexes
Whereas it is O(1) if you just have a main and auxiliary index

Sec. 4.5



Further issues with 
multiple indexes

Collection-wide statistics are hard to maintain
E.g., when we speak of spell-correction: which of several 
corrected alternatives do we present to the user?

We may want to pick the one with the most hits
How do we maintain the top ones with multiple indexes and invalidation bit 
vectors?
One possibility: ignore everything but the main index for such ordering

Will see more such statistics used in results ranking

Sec. 4.5



Dynamic indexing at 
search engines

All the large search engines now do dynamic indexing
Their indices have frequent incremental changes

News items, blogs, new topical web pages
But (sometimes/typically) they also periodically reconstruct the 
index from scratch

Query processing is then switched to the new index, and the old index is deleted

Sec. 4.5



Earlybird: Real-time 
search at Twitter

Requirements for real-time search
Low latency, high throughput query evaluation
High ingestion rate and immediate data availability
Concurrent reads and writes of the index
Dominance of temporal signal

48



Earlybird: Index 
organization

Earlybird consists of multiple index segments
Each segment is relatively small, holding up to 223 tweets
Each posting in a segment is a 32 bit word: 24 bits for the tweet id and 8 bits for the 
position in the tweet

Only one segment can be written to at any given time
Small enough to be in memory
New postings are simply appended to the postings list
But the postings list is traversed backwards to prioritize newer tweets

The remaining segments are optimized for read-only
Postings sorted in reverse chronological order (newest first)

49



Other sorts of indexes

Positional indexes
Same sort of sorting problem … just larger

Building character n-gram indexes:
As text is parsed, enumerate n-grams.
For each n-gram, need pointers to all dictionary terms containing it – the “postings”

Why?

Sec. 4.5



Resources for today’s 
lecture

Chapter 4 of IIR
MG Chapter 5
Original publication on MapReduce: Dean and Ghemawat (2004)
Original publication on SPIMI: Heinz and Zobel (2003)
Earlybird: Busch et al, ICDE 2012

Ch. 4



End of Slides


