CS60092: Information Retrieval

Index Construction Algorithms,
Dynamic Indexes

Prof. Sourangshu Bhattacharya

CSE, lIT Kharagpur

Index construction

How do we construct an index?
What strategies can we use with limited main
memory?

Recall index construction

Documents are parsed to extract words and these are

saved with the Document ID.

Doc 1

| did enact Julius
Caesar | was killed
I' the Capitol;
Brutus killed me.

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Term

|

did
enact
julius
caesar
|

was
killed
i

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

O
]
0
*

NDNNMNMNMMNMNMNMNMNMMNMNDMNMNDNNR,R A2 A addadaaaa

Key step

After all documents have been
parsed, the inverted file is sorted by
terms.

4

We focus on this sort step.

Term

|

did
enact
julius
caesar
I

was
killed
it

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

Doc #

NDNNMNNMNNNMNMMNMNMNNDMNMNMNMNNNR,R 22 QA aadad2daaaaaaaa

Term
ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

|

|

i

it
julius
killed
killed
let

me
noble
so
the
the
told
you
was
was
with

Doc #

RCV1: Our collection for this lecture

As an example for applying scalable index construction

algorithms, we will use the Reuters RCV1 collection.
This is one year of Reuters newswire (part of 1995 and 1996)

The collection isn’t really large enough, but it’s publicly
available and is a plausible example.

A Reuters RCV1 document

REUTERS B

You are here: Home > News > Science > Article

Gotoa Section: U.S. International Business Markets Politics Entertainment Technology Sports Oddly Enouc

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

Email This Article Print This Article | Reprints
Text [+
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a

possible indication of global warming, Australian scientists said on
Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate

wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

Reuters RCV1 statistics

symbol statistic

N
L
M

documents

avg. # tokens per doc
terms (= word types)

avg. # bytes per token

(incl. spaces/punct.)

avg. # bytes per token

(without spaces/punct.)
avg. # bytes per term
non-positional postings

value
800,000
200
400,000
6

4.5

7.5
100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sort-based index
construction

As we build the index, we parse docs one at a time.
The final postings for any term are incomplete until the end.

At 8 bytes per (termID, doclD), demands a lot of space for large

collections.
T =100,000,000 in the case of RCV1

So ... we can do this in memory today, but typical collections are much larger. E.g.,
the New York Times provides an index of >150 years of newswire

Thus: We need to store intermediate results on disk.

Scaling index construction

In-memory index construction does not scale
Can’t stuff entire collection into memory, sort, then write back

How can we construct an index for very large collections?

Taking into account hardware constraints. . .
Memory, disk, speed, etc.

Let’s review some hardware basics

Hardware basics

Servers used in IR systems now typically have several GB of main
memory, sometimes tens of GB.

Available disk space is several (2—3) orders of magnitude larger.

Fault tolerance is very expensive: It's much cheaper to use many
regular machines rather than one fault tolerant machine.

Hardware basics

Access to data in memory is much faster than access to data on
disk.

Disk seeks: No data is transferred from disk while the disk head is
being positioned.

Therefore: Transferring one large chunk of data from disk to
memory is faster than transferring many small chunks.

Disk 1/0O is block-based: Reading and writing of entire blocks (as
opposed to smaller chunks).
Block sizes: 8KB to 256 KB.

Hardware assumptions (circa 2007)

symbol statistic
S

b

average seek time
transfer time per byte
processor’s clock rate

low-level operation
(e.g., compare & swap a word)

size of main memory
size of disk space

value
5ms=5x103s
0.02us=2x102%s
10° s71

0.01 us=102s

several GB
1 TB or more

Sort using disk as “memory’ ?

Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

No: Sorting T = 100,000,000 records on disk is too slow — too
many disk seeks.

We need an external sorting algorithm.

Introduction to
Information Retrieval

CS276: Information Retrieval and Web Search

External memory indexing

BSBI: Blocked sort-based Indexing (Sorting with
fewer disk seeks)

8-byte records (termID, doclD)
These are generated as we parse docs
Must now sort 100M such 8-byte records by termID

Define a Block ~ 10M such records
Can easily fit a couple into memory
Will have 10 such blocks to start with

Basic idea of algorithm:

1. Accumulate postings for each block, sort, write to disk
2. Then merge the blocks into one long sorted order

BSBI: Blocked sort-based Indexing (Sorting with
fewer disk seeks)

BSBINDEXCONSTRUCTION()

1 n<—Q0

2 while (all documents have not been processed)
3 don+—n+1

4 block < PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODI1SK(block, f,)

7 MERGEBLOCKS(f1,.. ., fn; fmerged)

Sorting 10 blocks of 10M records

First, read each block and sort within:

Quicksort takes O(N In N) expected steps
In our case N=10M

10 times this estimate — gives us 10 sorted runs of 10M records
each.

Done straightforwardly, need 2 copies of data on disk
But can optimize this

How to merge the sorted runs?

Can do binary merges, with a merge tree of log,10 = 4 layers.
During each layer, read into memory runs in blocks of 10M, merge, write back.

brutus d1,d3,d6,d7
brutus d1,d3 brutus d6,d7 caesar d1,d2,d4,d8,d9
caesar d1,d2,d4 caesar d8,d9 julius d10
noble ds julius dio ‘ killed d8
with d1,d2,d3,d5 killed d8 noble d5

with d1,d2,d3,d5

Postings lists \
to be merged / Merged

postings list

Disk

How to merge the sorted runs?

But it is more efficient to do a multi-way merge, where you are reading from all

blocks simultaneously
1. Open all block files simultaneously and maintain a read buffer for each one and
a write buffer for the output file
2. In each iteration, pick the lowest termID that hasn’t been processed using a
priority queue
3. Merge all postings lists for that termID and write it out

Providing you read decent-sized chunks of each block into memory and then
write out a decent-sized output chunk, then you’re not killed by disk seeks

Remaining problem with sort-based algorithm

Our assumption was: we can keep the dictionary in memory.

We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

SPIMI:
Single-pass in-memory indexing

Key idea 1: Generate separate dictionaries for each block — no need to maintain
term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists as they occur.

With these two ideas we can generate a complete inverted index for each block.
These separate indexes can then be merged into one big index.

SPIMI-Invert

SPIMI-INVERT(token_stream)
1 output_file = NEWFILE()
dictionary = NEWHASH()
while (free memory available)
do token <« next(token_stream)
if term(token) ¢ dictionary
then postings_list = ADDTODICTIONARY (dictionary, term(token))
else postings_list = GETPOSTINGSLIST(dictionary, term(token))
if full(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms < SORTTERMS(dictionary)
12 WrITEBLOCKTODISK(sorted _terms, dictionary, output_file)
13 return output_file

O NO O & WD

Merging of blocks is analogous to BSBI.

SPIMI in action

Input token

Caesar d1
with d1
Brutus d1
Caesar d2
with d2
Brutus d3
with d3
Caesar d4
noble d5
with d5

Dictionary

brutus d1 d3

with d1d2 d3 d5
noble d5

caesar d1d2d4

Sorted
dictionary

brutus d1d3
caesard1d2d4
noble d5

with d1d2 d3 d5

SPIMI: Compression

Compression makes SPIMI even more efficient.
Compression of terms
Compression of postings

More on this later ...

Original publication on SPIMI: Heinz and Zobel (2003)

Introduction to
Information Retrieval

CS276: Information Retrieval and Web Search

Distributed indexing

Distributed indexing

For web-scale indexing (don’ t try this at home!):
must use a distributed computing cluster

Individual machines are fault-prone
Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Web search engine data centers

Web search data centers (Google, Bing, Baidu) mainly contain
commodity machines.

Data centers are distributed around the world.

Estimate: Google ~1 million servers, 3 million processors/cores
(Gartner 2007)

Massive data centers

If in a non-fault-tolerant system with 1000 nodes, each node has
99.9% uptime, what is the uptime of the entire system?

Answer: 37% - meaning, 63% of the time one or more servers is
down.

Exercise: Calculate the number of servers failing per minute for
an installation of 1 million servers.

Distributed indexing

Maintain a master machine directing the indexing job —
considered “safe”.

Break up indexing into sets of (parallel) tasks.

Master machine assigns each task to an idle machine from a pool.

Parallel tasks

We will use two sets of parallel tasks
Parsers
Inverters

Break the input document collection into splits

Each split is a subset of documents (corresponding to blocks in
BSBI/SPIMI)

Data flow

ign..-| Master ['
ass:gn { as } ass:gn Postings
I

a-f|g-p q-Z ap
PlAZCinverter >+ g
SpO|ItS : : O TI;
0 @ a-f|g-p|qg-z —

Map Segment files Reduce

phase phase

Parsers

Master assigns a split to an idle parser machine
Parser reads a document at a time and emits
(term, doc) pairs

Parser writes pairs into j partitions

Example: Each partition is for a range of terms’ first letters
(e.g., a-f, g-p, q-z) — here j = 3.
Now to complete the index inversion

Inverters

An inverter collects all (term,doc) pairs (= postings) for one term-
partition.
Sorts and writes to postings lists

Example for index
construction

Map: m/ Caesar conquered
dl: Ccame, Cc ed. /

d2 : Cdied.
9
<C,d1>, <came,d1>, <C,d1>, <c’ ed, d1>, <C, d2>, <died,d2>

Reduce:

(<C,(d1,d1,d2)>, <died,(d2)>, <came,(d1)>, <c’ ed,(d1)>)

9

(<C,(d1:2,d2:1)><died,(d2:1)>, <came,(d1:1)>,<c” ed,(d1:1)>)

Index construction

Index construction was just one phase.
Another phase: transforming a term-partitioned index into a

document-partitioned index.
Term-partitioned: one machine handles a subrange of terms
Document-partitioned: one machine handles a subrange of documents

As we’ |l discuss in the web part of the course, most search
engines use a document-partitioned index ... better load
balancing, etc.

MapReduce

The index construction algorithm we just described is an instance
of MapReduce.

MapReduce (Dean and Ghemawat 2004) is a robust and
conceptually simple framework for distributed computing ...

... without having to write code for the distribution part.

They describe the Google indexing system (ca. 2002) as consisting
of a number of phases, each implemented in MapReduce.

Schema for index construction in MapReduce

Schema of map and reduce functions
map: input = list(k, v)
reduce: (k,list(v)) = output

Instantiation of the schema for index construction

map: collection - list(termID, docID)

reduce: (<termlD1, list(docID)>, <termID2, list(docID)>, ...) =
(postings list1, postings list2, ...)

Introduction to
Information Retrieval

CS276: Information Retrieval and Web Search
Dynamic indexing

Dynamic indexing

Up to now, we have assumed that collections are static.

They rarely are:
Documents come in over time and need to be inserted.

Documents are deleted and modified.

This means that the dictionary and postings lists have to be

modified:
Postings updates for terms already in dictionary
New terms added to dictionary

Simplest approach

Maintain “big” main index
New docs go into “small” auxiliary index
Search across both, merge results

Deletions

Invalidation bit-vector for deleted docs
Filter docs output on a search result by this invalidation bit-vector

Periodically, re-index into one main index

Issues with main and auxiliary indexes

Problem of frequent merges — you touch stuff a lot
Poor performance during merge

Actually:
Merging of the auxiliary index into the main index is efficient if we keep a
separate file for each postings list.
Merge is the same as a simple append.
But then we would need a lot of files — inefficient for OS.

Assumption for the rest of the lecture: The index is one big file.

In reality: Use a scheme somewhere in between (e.g., split very
large postings lists, collect postings lists of length 1 in one file etc.)

Logarithmic merge

Maintain a series of indexes, each twice as large as the previous one
At any time, some of these powers of 2 are instantiated

Keep smallest (Z,) in memory, Larger ones (I, |4, ...) on disk

If Z, gets too big (> n), write to disk as I,or merge with |, (if |, already exists) as
Zy

Either write merge Z, to disk as I, (if no |;) or merge with I, to form Z,

<n

4n
8n
16n

Logarithmic merge in

action

LMERGEADDTOKEN(indexes, Zy, token)

1
1

1
2
3

O© 00 N O O B

0
1

Zo +— MERGE(Zp, {token})
if |Zo| =n
then for / + 0 to oc
do if /; € indexes
then Z; 1 «— MERGE(/,’, Z,)
(Zi+1 is a temporary index on disk.)
indexes «— indexes — {l;}
else [— Z; (Z; becomes the permanent index I;.)
indexes « indexes U {I;}
BREAK
Zo —

LOGARITHMICMERGE()

1
2
3
4

Zo— 0 (Zy is the in-memory index.)

indexes <« ()

while true

do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())

Logarithmic merge

Auxiliary and main index:
T/n merges where T is # of postings and n is size of auxiliary
Index construction time is O(T2/n) as in the worst case a posting is touched T/n times

Logarithmic merge: Each posting is merged at most O(log (T/n)) times, so

complexity is O(T log (T/n))
So logarithmic merge is much more efficient for index construction

But query processing now requires the merging of O(log (T/n)) indexes
Whereas it is O(1) if you just have a main and auxiliary index

Further issues with
multiple indexes

Collection-wide statistics are hard to maintain
E.g., when we speak of spell-correction: which of several

corrected alternatives do we present to the user?
We may want to pick the one with the most hits

How do we maintain the top ones with multiple indexes and invalidation bit
vectors?

One possibility: ignore everything but the main index for such ordering
Will see more such statistics used in results ranking

Dynamic indexing at
search engines

All the large search engines now do dynamic indexing

Their indices have frequent incremental changes

News items, blogs, new topical web pages
But (sometimes/typically) they also periodically reconstruct the
index from scratch

Query processing is then switched to the new index, and the old index is deleted

Earlybird: Real-time
search at Twitter

Requirements for real-time search
Low latency, high throughput query evaluation
High ingestion rate and immediate data availability
Concurrent reads and writes of the index
Dominance of temporal signal

Earlybird: Index
organization

Earlybird consists of multiple index segments
Each segment is relatively small, holding up to 223 tweets
Each posting in a segment is a 32 bit word: 24 bits for the tweet id and 8 bits for the
position in the tweet

Only one segment can be written to at any given time
Small enough to be in memory
New postings are simply appended to the postings list
But the postings list is traversed backwards to prioritize newer tweets
The remaining segments are optimized for read-only
Postings sorted in reverse chronological order (newest first)

Other sorts of indexes

Positional indexes

Same sort of sorting problem ... just larger >
Building character n-gram indexes: <# Why:

As text is parsed, enumerate n-grams.
For each n-gram, need pointers to all dictionary terms containing it — the “postings’

Resources for today’s

lecture

Chapter 4 of IIR
MG Chapter 5

Original publication on MapReduce: Dean and Ghemawat (2004)
Original publication on SPIMI: Heinz and Zobel (2003)
Earlybird: Busch et al, ICDE 2012

End of Slides

